Homework 6: Nonlinear Systems and Optimization

CS 205A: Mathematical Methods for Robotics, Vision, and Graphics (Winter 2018)
Stanford University

Due Thursday, March 1, 11:59pm

Textbook problems: 8.7 (20 points), 9.2 (20 points), 9.3 (12 points), 9.5 (18 points)
9.3a erratum: the denominator of the last term should be 2(x2 — x1) (y2 — y3) — 2(x2 — x3) (Y2 — ¥1).

Julia Programming: (30 points) Let’s model a horizontal elastic string pinned at anchor points
(0,0) and (1,0). We can model this string as N + 1 consecutive springs connecting N freely-
moving interior nodes, and each node j is located at ¥; = (x;,y;). The rest length Ls of each spring
is set to ﬁ so that when there are no external forces, the string is entirely loose, yet straight with
no extra slack. Under gravity, the string will stretch downward into a catenary shape. We can
express a vector containing all the forces, f = (fi,..., f), as a function of all the interior node
positions, X = (¥, ..., XN):

=

fi=—k [(fw—l) = Ls®j(j-1)) + (Xj(j1) — Lsfj<f+1>)} +mg,

where Xrij = J?i — fj, x,-]- = ,f(] = <0,0>,fN+1 = <1, 0>, and g = <0, —9.8>.
This function has been implemented for you in the starter code, and your goal is to find the equi-
librium configuration ¥ such that f(¥) = 0.

Do the following:

J1. (10 points) Implement Newton’s method, using ForwardDiff . jacobian() to retrieve the Ja-
cobian at every step. Test it on 50 and 100 interior nodes, and run each configuration for 10
iterations. Plot both the final configuration and the convergence curve, for 50 and 100 inte-
rior nodes, and report the runtimes. (The plotting and runtime reporting are implemented
for you in the starter code. Implement Newton’s method in the provided space.)

J2. (10 points) Broyden’s method can avoid calling jacobian() every iteration. Implement
Broyden’s method, initializing ]y to the identity. Test this on 10, 50, and 100 interior nodes,
and run each configuration for enough iterations until it converges. (Note: expect to spend
several minutes per run for N = 100.) Plot both the final configuration and the convergence
curve, for each run, and report the runtimes. Then repeat these runs with a new Broyden
implementation that initializes ]y to the first result from ForwardDiff . jacobian().

J3. (10 points) The Broyden Inverse Method allows us to update the inverse Jacobian directly, in-
stead of solving a linear system at every iteration. Implement the Broyden Inverse Method,
initializing Jiny to the identity. Test this on 10, 50, and 100 interior nodes, and run for enough



iterations in each run until it converges. Plot both the final configuration and the conver-
gence curve, for each run, and report the runtime. Then repeat these runs with a new imple-
mentation that initializes [iny to the inverse of ForwardDiff . jacobian().



